

Intended Use

For the quantitative determination of Aspartate Aminotransferase (AST) in human serum using the Mindray BS-480 analyzer.

Clinical Significance

AST is widely distributed in tissues with the highest concentrations found in the liver, heart, skeletal muscle and kidneys. Diseases involving any of these tissues can lead to elevated levels of AST in serum. Following myocardial infarction, AST levels are elevated and reach a peak after 48 to 60 hours.

Hepatobiliary diseases such as cirrhosis, metastatic carcinoma and viral hepatitis can show increased levels of AST. Other disorders which can lead to an elevated level of AST are muscular dystrophy, dermatomyositis, acute pancreatitis and infectious mononucleosis.¹

Method History

Karmen² developed a kinetic assay procedure in 1955 which was based upon the use of malate dehydrogenase and NADH. Optimized procedures were presented by Henry³ in 1960 and Amador and Wacker⁴ in 1962. These modifications increased accuracy and lowered the effect of interfering substances. The Committee on Enzymes of the Scandinavian Society for Clinical Chemistry and Clinical Physiology⁵ published a recommended method based on optimized modifications in 1974. In 1976, the Expert Panel on Enzymes of the International Federation of Clinical Chemistry (IFCC)⁶ proposed the addition of pyridoxal-5-phosphate to the reaction mixture to ensure maximum activity. The IFCC⁷ published a recommended method that included P-5-P in 1978. The present method is based on IFCC recommendations but does not contain P-5-P since most specimens contain adequate amounts of this cofactor for full recovery of AST activity.^{8,9,10}

Principle

Aspartate aminotransferase (AST) catalyzes the transfer of the amino group from L-aspartate to α -Ketoglutarate to yield oxalacetate and L-glutamate. The oxalacetate undergoes reduction with simultaneous oxidation of NADH to NAD in the malate dehydrogenase (MDH) catalyzed indicator reaction. The resulting rate of decrease in absorbance at 340nm is directly proportional to the AST activity. Lactate dehydrogenase (LDH) is added to prevent interference from endogenous pyruvate which is normally present in serum.

Reagents

After combining R1 and R2, the reagent contains: L-aspartic acid 200mM, α-ketoglutaric acid 11mM, LDH (microbial) > 1000U/L, MDH (microbial) ≥800U/L, NADH >0.18mM, buffer, sodium azide 0.28%, stabilizers.

Reagent Preparation

The reagents are ready to use.

Reagent Storage

Store the reagents at 2-8°C. The reagent is stable until the expiration date appearing on the label when stored as directed. Manufacturer studies have shown reagent is stable for 30 days once placed in the refrigerated reagent carousel (2-10°C), however reagent stability may vary based on individual laboratory conditions.

Reagent Deterioration

Do not use reagent if:

- 1. The initial absorbance at 340nm is below 0.800.
- 2. The reagent fails to meet stated parameters of performance.

Precautions and Hazards

- 1. This reagent set is for *in vitro* diagnostic use only.
- The reagent contains sodium azide (0.28%) as a preservative. Do not in gest. May react with lead and copper plumbing to form highly explosive metal azides.
 Upon disposal, flush with a large volume of water to prevent azide build up.

Hazards:

R1: <u>Hazard Classifications</u>: Specific Target Organ Toxicity, Single Exposure; Respiratory System (Category 3) <u>Hazard Statements</u>: H335: May cause respiratory irritation.

Precautionary Statements: Prevention: P261 Avoid breathing dust/fume/gas/mist/vapors/spray. P271 Use only in a well-ventilated

area. **Response:** P312 Call a POISON CENTER or doctor/physician if you feel unwell. P304 + P340 IF INHALED: Remove victim to fresh air and Keep at rest in a position comfortable for breathing. **Storage:** P403 + P233 Store in a well-ventilated place. Keep container tightly closed. **Disposal:** P501: Dispose of contents into sewer system after diluting with large volumes of water, if in accordance with local regulations.

R2: Hazard Classifications: Acute Toxicity, Dermal (Category 4),

Hazard Statements: H312: Harmful in contact with skin

Precautionary Statements: Prevention: P280 Wear protective gloves/protective clothing/eye protection/face protection. P312 Call a POISON CENTER or doctor/physician if you feel unwell. P363 Wash contaminated clothing before reuse. P302 + P352 IF ON SKIN: wash with plenty of soap and water. Storage: Disposal: P501: Dispose of contents into sewer system after diluting with large volumes of water, if in accordance with local regulations. Refer to the Safety Data Sheet for this product (SDS-AST600) available at www.medtestdx.com.

Signal Word: Warning

Signal Word: Warning

Specimen Collection and Storage¹¹

- 1. Non-hemolyzed serum is recommended. Red cells contain AST which can give falsely elevated results.
- AST in serum is reported stable for ten days when refrigerated (2-8°C), two weeks when frozen (-20°C), and four days when stored at room temperature (15-30°C).

Interferences

- 1. A number of drugs and substances affect AST activity. See Young, et al. 12
- 2. Patients with severe vitamin B6 deficiency could have a decreased recovery of AST, presumably due to a lack of pyridoxal phosphate. 13
- 3. Bilirubin to at least 18 mg/dl, and hemoglobin to at least 300 mg/dl, have been found to have a negligible effect on this procedure.

Materials Provided

AST (SGOT) Reagents R1 and R2

Materials Required but not Provided

- Mindray BS-480 Analyzer
- 2. BS-480 Operation manual
- 3. Chemistry control, catalog number CHEQ480

Limitations

- 1. Samples with values above 500 IU/L should be diluted 1:1 with saline, re-assayed and the results multiplied by two.
- Patients with severe vitamin B6 deficiency could have a decreased recovery of AST, presumably due to a lack of pyridoxal phosphate.

Calibration

The procedure is standardized by means of the millimolar absorptivity of NADH taken as 6.22 at 340nm under the test conditions described.

Quality Control

The validity of the reaction should be monitored using control sera with known normal and abnormal AST (SGOT) values. These controls should be run at least with every shift in which AST (SGOT) assays are performed. It is recommended that each laboratory establish its own frequency of control determination. Quality control requirements should be performed in conformance with local, state, and/or Federal regulations or accreditation requirements.

Expected Values¹³

8 to 22 IU/L (30°C)

5 to 34 IU/L (37°C)

Since the expected values are affected by age, sex, diet, and geographical location, each laboratory is strongly urged to establish its own reference range for this procedure.

Performance

- 1. Assay Range: 3-500 IU/L.
- 2. Comparison: A study was performed between the Mindray BS-480 and a similar analyzer using this method, resulting in the following:

Method	AST
N	81
Mean AST (IU/L)	81.9
Range (IU/L)	10-467
Standard Deviation	122.8
Regression Analysis	y = 1.034x + 4.0
Correlation Coefficient	0.9987

 Precision: Precision studies were performed using the Mindray BS-480 analyzer following a modification of the guidelines which are contained in NCCLS document EP5-T2.¹⁴

Within Day							
Sample	LOW	MID	HIGH				
N	20	20	20				
Mean	75.0	268.6	387.2				
Standard Deviation	0.8	1.0	1.8				
Coefficient of Variation (%)	1.1%	0.4%	0.5%				

lotai							
Sample	LOW	MID	HIGH				
N	40	40	40				
Mean	71.4	272.2	384.9				
Standard Deviation	1.2	2.2	7.3				
Coefficient of Variation (%)	1.6%	0.8%	1.9%				

Sensitivity: 2SD limit of detection (95% Conf) = 3 IU/L

References

- 1. Tietz, N.W., Fundamentals of Clinical Chemistry, W.B. Saunders co., p 674 (1982).
- 2. Karmen, A., et al, J. Clin. Invest 34:126 (1955).
- 3. Henry, R.J., et al, Am. J. Clin. Path. 34:381 (1960).
- 4. Amador, E., Wacker, W., Clin. Chem. 8:343 (1962).
- 5. The Committee on Enzymes of the Scandinavian Society for Clinical Chemistry and Clinical Physiology, Scand. J. Clin. Lab. Invest 32:291 (1974).
- Expert Panel of Enzymes of the International Federation of Clinical Chemistry, Clin. Chem. Acta. 70:F19 (1976).
- 7. Expert Panel of Enzymes of the International Federation of Clinical Chemistry, Clin. Chem. 24:720 (1978).
- 8. Jung, K., Bohm, M., Enzyme 23:201 (1978).
- 9. Hafkenscheid, J.C.M., Dijit, C.C.M., Clin. Chem. 25/1:55 (1979).
- 10. Horder, M., Bowers, G.N., Jr., Clin. Chem. 23:551 (1977).
- 11. Henry, R.J., Clinical Chemistry: Principles and Technics, 2nd Ed., Hagerstown (MD), Harper & Row, P882 (1974).
- 12. Young, D.S., et al, Clin. Chem. 21:1D (1975).
- 13. Kaplan, L.A., Pesce, A.J., Clinical Chemistry, St. Louis, C.V. Mosby, p.911-912 (1989).
- 14. NCCLS document "Evaluation of Precision Performance of Clinical Chemistry Devices", 2nd Ed. (1992).

CHEMISTRY PARAMETERS

Chem:	AST			No.:	203	Sample Type:	Serum
Chemistry:	Aspartate Trans	saminase				Print Name:	AST
Reaction Type:	Kinetic					Reaction Direction:	Negative
Pri Wave:	340					Sec Wave:	412
Unit:	U/L					Decimal	0
Blank Time:	0 0					Reaction Time:	56 71
Sar	mple Vol.	Aspirated	Dilue	nt		Reagent Vol.	Diluent
Standard: 6.	.0 ul	ul		ul		R1: 120 ul	ul
Decreased: -	ul	ul		ul		R2: 30 ul	ul
Increased: -	ul	ul		ul		R3: ul	ul
	Sample Blank	☑ Auto Rerun				R4: ul	ul
Slope/Offset Adjustment							
Slope: 1 Offset: 0							

Linearity Range (Standard)	3	500			Linearity Limit:	0.2
Linearity Range (Decreased)					Substrate Depletion:	5000
Linearity Range (Increased)					Mixed Blank Abs:	
R1 Blank Abs:					Uncapping Time	
Blank Response:					Reagent Alarm Limit:	
Twin Chemistry:					☐ Enzyme Linear Exte	nsion
☐ Prozone Check			○ Rate Check		 Antigen Addition 	
Q1:		Q2:		Q3:	Q4	:
PC:		ABS:				

CALIBRATION PARAMETERS

Calibrator Definition										
Calibrator	:	* Lot No.: *								
Exp Date:	:	*								
Carousel		Pos								
Sample Carousel 1		*								
Sample Carousel 2										
Sample Carousel 3										
Reagent/Calibration	<u>n</u>									
<u>Calibrator</u>		<u>Pos</u>	Lot No	Exp Date	Chem	Conc	<u>Unit</u>			
Water		W	*	*	AST	0	U/L			
Calibration Setup										
Chem:	AST									
Calibration Settings										
Math Model:	K Factor									
Factor:	4200		Replicates:	1						
Acceptance Limits										
Cal Time:	*		Hour							
Slope Diff:			SD:							
Sensitivity:			Repeatability:							
Deter Coeff:			repeatability.							
Deter Coen.										
Auto Calib.										
☐ Bottle Changed		□ Lot Ch	hanged	☐ Cal Time						

It is recommended that two levels of control material be assayed daily.

Manufactured for MedTest DX
5449 Research Drive Canton, MI 48188

Symbol Key

Use by (YYYY-MM-DD)

Temperature limitation

Lot and batch code

IVD

In vitro diagnostic medical device

^{*} Indicates user defined parameter.